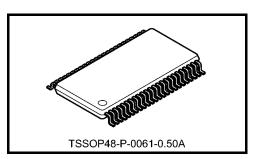
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74VCX162374FT

Low-Voltage 16-Bit D-Type Flip-Flop with 3.6-V Tolerant Inputs and Outputs

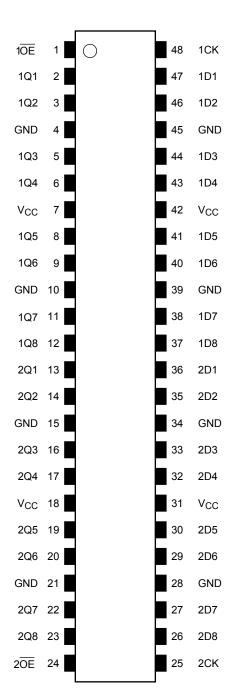

The TC74VCX162374FT is a high-performance CMOS 16-bit D-type flip-flop. Designed for use in 1.8-V, 2.5-V or 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

It is also designed with overvoltage tolerant inputs and outputs up to $3.6\ V$.

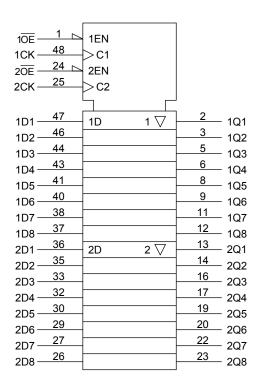
This 16-bit D-type flip-flop is controlled by a clock input (CK) and an output enable input (\overline{OE}) which are common to each byte. It can be used as two 8-bit flip-flops or one 16-bit flip-flop. When the \overline{OE} input is high, the outputs are in a high-impedance state.

The $26 \cdot \Omega$ series resistor helps reducing output overshoot and undershoot without external resistor.

All inputs are equipped with protection circuits against static discharge.



Weight: 0.25 g (typ.)


Features

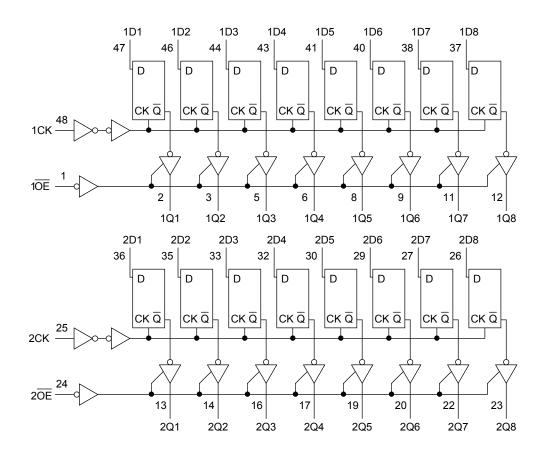
- 26-Ω series resistors on outputs
- Low-voltage operation: V_{CC} = 1.8 to 3.6 V
- High-speed operation: $t_{pd} = 3.4 \text{ ns (max) (V}_{CC} = 3.0 \text{ to } 3.6 \text{ V})$
 - : $t_{pd} = 4.8 \text{ ns (max)} (V_{CC} = 2.3 \text{ to } 2.7 \text{ V})$
 - : $t_{pd} = 6.0 \text{ ns (max) (V}_{CC} = 1.8 \text{ V})$
- Output current: $I_{OH}/I_{OL} = \pm 12 \text{ mA (min)} (V_{CC} = 3.0 \text{ V})$
 - : $I_{OH}/I_{OL} = \pm 8 \text{ mA (min) (V}_{CC} = 2.3 \text{ V)}$
 - : $I_{OH}/I_{OL} = \pm 4$ mA (min) ($V_{CC} = 1.8$ V)
- Latch-up performance: -300 mA
- ESD performance: Machine model $\geq \pm 200 \text{ V}$
 - Human body model $\geq \pm 2000 \text{ V}$
- Package: TSSOP
- 3.6-V tolerant function and power-down protection provided on all inputs and outputs

Pin Assignment (top view)

IEC Logic Symbol

Truth Table

	Outputs		
1OE	1CK	1D1-1D8	1Q1-1Q8
Н	Х	Х	Z
L	\rightarrow	Х	Qn
L		L	L
L,		Н	Н


	Outputs		
2 OE	2CK	2D1-2D8	2Q1-2Q8
Н	Х	Х	Z
L	$\overline{}$	Х	Qn
L		L	L
L		Н	Н

X: Don't care

Z: High impedance

Qn: No change

System Diagram

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Power supply voltage	V _{CC}	-0.5 to 4.6	V
DC input voltage	V _{IN}	-0.5 to 4.6	V
		-0.5 to 4.6 (Note 2)	
DC output voltage	V_{OUT}	-0.5 to V _{CC} + 0.5	V
		(Note 3)	
Input diode current	I_{IK}	-50	mA
Output diode current	I _{OK}	±50 (Note 4)	mA
DC output current	lout	±50	mA
Power dissipation	P_{D}	400	mW
DC V _{CC} /ground current per supply pin	I _{CC} /I _{GND}	±100	mA
Storage temperature	T _{stg}	-65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: OFF state

Note 3: High or low state. IOUT absolute maximum rating must be observed.

Note 4: $V_{OUT} < GND$, $V_{OUT} > V_{CC}$

Operating Ranges (Note 1)

Characteristics	Symbol Rating		Unit
Power supply voltage	Voc	1.8 to 3.6	V
rower supply voltage	V _{CC}	1.2 to 3.6 (Note 2)	V
Input voltage	V _{IN}	-0.3 to 3.6	V
Output voltage	V _{OUT}	0 to 3.6 (Note 3)	V
Output voltage	VOU1	0 to V _{CC} (Note 4)	V
		±12 (Note 5)	
Output current	I _{OH} /I _{OL}	±8 (Note 6)	mA
		±4 (Note 7)	
Operating temperature	T _{opr}	-40 to 85	°C
Input rise and fall time	dt/dv	0 to 10 (Note 8)	ns/V

Note 1: The operating ranges must be maintained to ensure the normal operation of the device.

Unused inputs must be tied to either VCC or GND.

Note 2: Data retention only

Note 3: OFF state

Note 4: High or low state

Note 5: $V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$

Note 6: $V_{CC} = 2.3 \text{ to } 2.7 \text{ V}$

Note 7: $V_{CC} = 1.8 \text{ V}$

Note 8: $V_{IN} = 0.8$ to 2.0 V, $V_{CC} = 3.0$ V

Electrical Characteristics

DC Characteristics (Ta = -40 to 85°C, 2.7 V < $V_{CC} \le 3.6$ V)

Character	istics	Symbol	Test C	Test Condition		Min	Max	Unit	
					V _{CC} (V)				
Input voltage	H-level	V_{IH}	-	_	2.7 to 3.6	2.0		V	
input voltage	L-level	V _{IL}		_	2.7 to 3.6		0.8	٧	
				$I_{OH} = -100 \mu A$	2.7 to 3.6	V _{CC} - 0.2	_		
	H-level	V _{OH}	V _{IN} = V _{IH} or V _{IL}	$I_{OH} = -6 \text{ mA}$	2.7	2.2	_		
				$I_{OH} = -8 \text{ mA}$	3.0	2.4	_		
Output voltage				$I_{OH} = -12 \text{ mA}$	3.0	2.2	_	V	
			V _{OL} V _{IN} = V _{IH} or V _{IL}	$I_{OL} = 100 \mu A$	2.7 to 3.6		0.2		
	L-level	Vai		$I_{OL} = 6 \text{ mA}$	2.7	_	0.4		
	L-level	VOL		AIN - AIH OL AIT	$I_{OL} = 8 \text{ mA}$	3.0	_	0.55	
				I _{OL} = 12 mA	3.0	_	0.8		
Input leakage curre	ent	I _{IN}	V _{IN} = 0 to 3.6 V		2.7 to 3.6	_	±5.0	μА	
2 state output OFF	atata aurrant	1	V _{IN} = V _{IH} or V _{IL}	$V_{IN} = V_{IH}$ or V_{IL}			±10.0		
3-state output OFF state current		loz	$V_{OUT} = 0$ to 3.6 V		2.7 to 3.6		±10.0	μΑ	
Power-off leakage	current	l _{OFF}	V _{IN} , V _{OUT} = 0 to 3.6 V		0	_	10.0	μА	
Ouise sent supply supply		Icc	V _{IN} = V _{CC} or GND		2.7 to 3.6	_	20.0		
Quiescent supply o	Quiescent supply current		$V_{CC} \le (V_{IN}, V_{OUT}) \le 3.6 \text{ V}$		2.7 to 3.6	_	±20.0	μΑ	
Increase in I _{CC} per	input	Δlcc	V _{IH} = V _{CC} - 0.6 V		2.7 to 3.6	_	750		

DC Characteristics (Ta = -40 to 85°C, 2.3 V \leq V_{CC} \leq 2.7 V)

Characteris	stics	Symbol	Test Co	Test Condition Vcc (V)		Min	Max	Unit
land to the ma	H-level	V _{IH}	_	_	2.3 to 2.7	1.6	_	
Input voltage	L-level	V _{IL}	_	_	2.3 to 2.7	_	0.7	V
				$I_{OH} = -100 \mu A$	2.3 to 2.7	V _{CC} - 0.2	_	
	H-level	VoH	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -4 mA	2.3	2.0	_	
				I _{OH} = -6 mA	2.3	1.8	_	
Output voltage				I _{OH} = -8 mA	2.3	1.7	_	V
				I _{OL} = 100 μA	2.3 to 2.7	_	0.2	
	L-level	V _{OL}	$V_{IN} = V_{IH}$ or V_{IL}	I _{OL} = 6 mA	2.3	_	0.4	
				I _{OL} = 8 mA	2.3	_	0.6	
Input leakage currer	nt	I _{IN}	V _{IN} = 0 to 3.6 V		2.3 to 2.7	_	±5.0	μΑ
3-state output OFF state current		loz	$V_{IN} = V_{IH}$ or V_{IL}		2.3 to 2.7	_	±10.0	μА
			V _{OUT} = 0 to 3.6 V					
Power-off leakage c	urrent	loff	V _{IN} , V _{OUT} = 0 to 3.6 V		0	_	10.0	μА
Quiescent supply cu	ırrent	Icc	$V_{IN} = V_{CC}$ or GND		2.3 to 2.7	_	20.0	μΑ
Quiococin ouppiy oc		.00	$V_{CC} \le (V_{IN}, V_{OUT}) \le 3.6 \text{ V}$		2.3 to 2.7	_	±20.0	μ/ (

DC Characteristics (Ta = -40 to 85°C, 1.8 V \leq V_{CC} < 2.3 V)

Characteris	etice	Symbol	Test Condition			Min	Max	Unit
Ondracteris	51103	Cymbol	1031 00	onation	V _{CC} (V)	IVIIII	IVICX	Offic
Input voltage	H-level	V _{IH}	_	_	1.8 to 2.3	0.7 × V _{CC}	_	V
input voltage	L-level	V _{IL}	_	_	1.8 to 2.3	_	0.2 × V _{CC}	V
	H-level	Voh	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -100 μA	1.8	V _{CC} - 0.2	_	
Output voltage				I _{OH} = -4 mA	1.8	1.4	_	V
	L-level	Vol	V _{IN} = V _{IH} or V _{II}	I _{OL} = 100 μA	1.8		0.2	
	L-IEVEI	VOL	VIN — VIH OI VIL	I _{OL} = 4 mA	1.8		0.3	
Input leakage currer	nt	I _{IN}	$V_{IN} = 0 \text{ to } 3.6 \text{ V}$		1.8		±5.0	μΑ
3-state output OFF	state current	l _{OZ}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ V}$				±10.0	μА
Power-off leakage c	urrent	l _{OFF}	V _{IN} , V _{OUT} = 0 to 3.6 V		0	_	10.0	μА
Ouissant summit summer		laa	$V_{IN} = V_{CC}$ or GND		1.8		20.0	μА
Quiescent supply cu	iii c iii	Icc	$V_{CC} \le (V_{IN}, V_{OUT}) \le 3.6$	$V_{CC} \le (V_{IN}, V_{OUT}) \le 3.6 \text{ V}$			±20.0	μΑ

AC Characteristics (Ta = –40 to 85°C, input: $t_r = t_f$ = 2.0 ns, C_L = 30 pF, R_L = 500 Ω) (Note 1)

Characteristics	Symbol	Symbol Test Condition		Min	Max	Unit
Citalacteristics	Symbol	rest Condition	V _{CC} (V)	IVIIII	IVIAX	Offic
			1.8	125	_	
Maximum clock frequency	f _{max}	Figure 1, Figure 2	2.5 ± 0.2	200	_	MHz
			3.3 ± 0.3	250	_	
Drang ration delay time			1.8	1.5	6.0	
Propagation delay time (CK-Q)	t _{pLH}	Figure 1, Figure 2	2.5 ± 0.2	1.0	4.8	ns
(CK-Q)	t _{pHL}		3.3 ± 0.3	0.8	3.4	
			1.8	1.5	7.6	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	2.5 ± 0.2	1.0	5.4	ns
	^t pZH		3.3 ± 0.3	0.8	3.9	
		Figure 1, Figure 3	1.8	1.5	5.3	
3-state output disable time	t _{pLZ}		2.5 ± 0.2	1.0	4.4	ns
	t _{pHZ}		3.3 ± 0.3	0.8	4.0	
NATIONAL CONTRACTOR OF THE PROPERTY OF THE PRO			1.8	3.0	_	
Minimum pulse width		t _{w (L)} Figure 1, Figure 2	2.5 ± 0.2	1.5	_	ns
(CK)	^t w (L)		3.3 ± 0.3	1.5	_	
			1.8	2.5	_	
Minimum setup time	ts	Figure 1, Figure 2	2.5 ± 0.2	1.5	_	ns
			3.3 ± 0.3	1.5	_	
			1.8	1.0	_	
Minimum hold time	t _h	Figure 1, Figure 2	2.5 ± 0.2	1.0	_	ns
			3.3 ± 0.3	1.0	_	
			1.8	_	0.5	
Output to output skew	tosLH	(Note 2)	2.5 ± 0.2	_	0.5	ns
	t _{osHL}		3.3 ± 0.3	_	0.5	

Note 1: For $C_L = 50 \ pF$, add approximately 300 ps to the AC maximum specification.

Note 2: Parameter guaranteed by design.

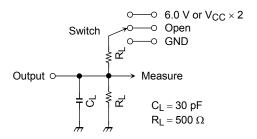
 $(t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|)$

Dynamic Switching Characteristics (Ta = 25°C, input: $t_r = t_f = 2.0$ ns, $C_L = 30$ pF)

Characteristics	Symbol	Test Condition	Ī	V _{CC} (V)	Тур.	Unit
		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (No.	ote)	1.8	0.15	
Quiet output maximum dynamic V _{OI}	V _{OLP}	$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (No.	ote)	2.5	0.25	V
, 01		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (No.	ote)	3.3	0.35	
		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (No.	ote)	1.8	-0.15	
Quiet output minimum dynamic V _{OI}	V _{OLV}	$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (No.	ote)	2.5	-0.25	V
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (No.	ote)	3.3	-0.35	
		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (No.	ote)	1.8	1.55	
Quiet output minimum dynamic V _{OH}	V _{OHV}	$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (No.	ote)	2.5	2.05	V
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (No.	ote)	3.3	2.65	

Note: Parameter guaranteed by design.

Capacitive Characteristics (Ta = 25°C)


Characteristics	Cymbol	Test Condition			Tun	Unit
Characteristics	Symbol			V _{CC} (V)	Тур.	Offic
Input capacitance	C _{IN}	_		1.8, 2.5, 3.3	6	pF
Output capacitance	CO	_		1.8, 2.5, 3.3	7	pF
Power dissipation capacitance	C _{PD}	$f_{IN} = 10 \text{ MHz}$	Note)	1.8, 2.5, 3.3	20	pF

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/16 \text{ (per bit)}$

AC Test Circuit

Parameter	Switch		
t _{pLH} , t _{pHL}	Open		
t _{pLZ} , t _{pZL}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
t _{pHZ} , t _{pZH}	GND		

Figure 1

AC Waveform

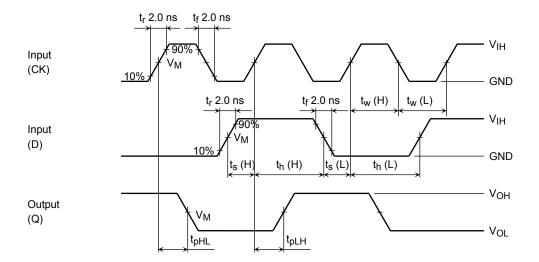


Figure 2 t_{pLH} , t_{pHL} , t_w , t_s , t_h

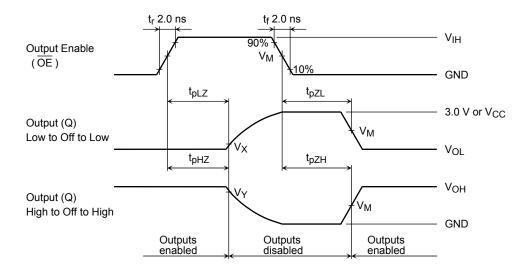
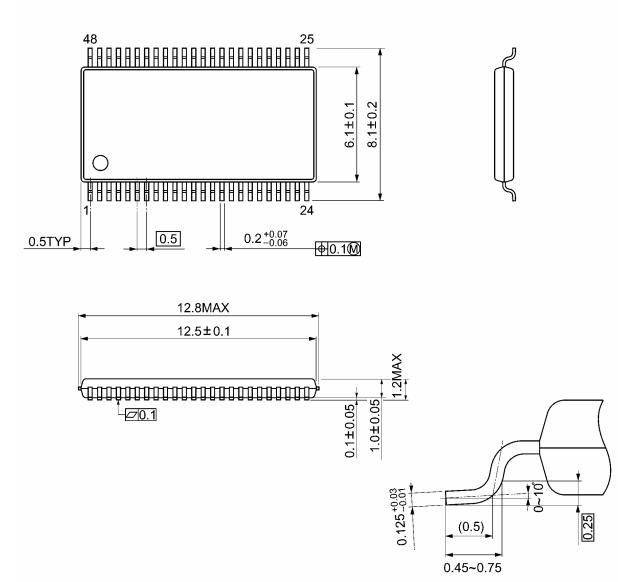



Figure 3 $t_{pLZ}, t_{pHZ}, t_{pZL}, t_{pZH}$

Symbol		V _{CC}	
Syllibol	$3.3\pm0.3~\textrm{V}$	$2.5\pm0.2\textrm{V}$	1.8 V
V_{IH}	2.7 V	V _{CC}	V _{CC}
V _M	1.5 V	V _{CC} /2	V _{CC} /2
VX	V _{OL} + 0.3 V	V _{OL} + 0.15 V	V _{OL} + 0.15 V
V_{Y}	V _{OH} – 0.3 V	V _{OH} – 0.15 V	V _{OH} – 0.15 V

Package Dimensions

TSSOP48-P-0061-0.50A Unit: mm

Weight: 0.25 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.